If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-14=0
a = 3; b = 0; c = -14;
Δ = b2-4ac
Δ = 02-4·3·(-14)
Δ = 168
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168}=\sqrt{4*42}=\sqrt{4}*\sqrt{42}=2\sqrt{42}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{42}}{2*3}=\frac{0-2\sqrt{42}}{6} =-\frac{2\sqrt{42}}{6} =-\frac{\sqrt{42}}{3} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{42}}{2*3}=\frac{0+2\sqrt{42}}{6} =\frac{2\sqrt{42}}{6} =\frac{\sqrt{42}}{3} $
| -5w=-10/3 | | 3/x²-3x+4/x=1/x-3 | | 2.4c=-19.2 | | 4u+5=17 | | 200=5*^n | | 2(x2+16)=64 | | 20x-16=4x+46 | | -67+x=-112 | | 20x-16=4x+48 | | -a-150=16a-15 | | d/9+11=16 | | 120-52=x | | -11=-5(x+3)+6x+6 | | (3/4)*g=-12 | | -3/8r+41=41-22 | | 7u+5=19 | | 114-x=180 | | 7/2=6x-9 | | 2x+1=x-7= | | (x+2)(4x+5)=0 | | 90=6x+7+11x-2 | | 5x^2-7=60 | | -6x-4(-7+1)=-136 | | -8+f/2=-1 | | 5-3x=7x-9-10x | | -x-0=9 | | 4(-2x-3)=0 | | |2x-6|=81 | | 5y-1/2-8y=51/2 | | 2x´2-12x-13=0 | | 5x-4=6-4x | | -2c-8=18 |